Whakaoti mō x
x=\frac{14}{17}\approx 0.823529412
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-4+3\left(2x+8\right)=48+24x-42
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,2.
x-4+6x+24=48+24x-42
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x+8.
7x-4+24=48+24x-42
Pahekotia te x me 6x, ka 7x.
7x+20=48+24x-42
Tāpirihia te -4 ki te 24, ka 20.
7x+20=6+24x
Tangohia te 42 i te 48, ka 6.
7x+20-24x=6
Tangohia te 24x mai i ngā taha e rua.
-17x+20=6
Pahekotia te 7x me -24x, ka -17x.
-17x=6-20
Tangohia te 20 mai i ngā taha e rua.
-17x=-14
Tangohia te 20 i te 6, ka -14.
x=\frac{-14}{-17}
Whakawehea ngā taha e rua ki te -17.
x=\frac{14}{17}
Ka taea te hautanga \frac{-14}{-17} te whakamāmā ki te \frac{14}{17} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}