Whakaoti mō x
x<1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x-4\right)-3\left(3x+1\right)>-24
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
4x-16-3\left(3x+1\right)>-24
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-4.
4x-16-9x-3>-24
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x+1.
-5x-16-3>-24
Pahekotia te 4x me -9x, ka -5x.
-5x-19>-24
Tangohia te 3 i te -16, ka -19.
-5x>-24+19
Me tāpiri te 19 ki ngā taha e rua.
-5x>-5
Tāpirihia te -24 ki te 19, ka -5.
x<\frac{-5}{-5}
Whakawehea ngā taha e rua ki te -5. I te mea he tōraro a -5, ka huri te ahunga koreōrite.
x<1
Whakawehea te -5 ki te -5, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}