Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x-3\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}-\frac{\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+6 me x-6 ko \left(x-6\right)\left(x+6\right). Whakareatia \frac{x-3}{x+6} ki te \frac{x-6}{x-6}. Whakareatia \frac{x+8}{x-6} ki te \frac{x+6}{x+6}.
\frac{\left(x-3\right)\left(x-6\right)-\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}
Tā te mea he rite te tauraro o \frac{\left(x-3\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)} me \frac{\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-6x-3x+18-x^{2}-6x-8x-48}{\left(x-6\right)\left(x+6\right)}
Mahia ngā whakarea i roto o \left(x-3\right)\left(x-6\right)-\left(x+8\right)\left(x+6\right).
\frac{-23x-30}{\left(x-6\right)\left(x+6\right)}
Whakakotahitia ngā kupu rite i x^{2}-6x-3x+18-x^{2}-6x-8x-48.
\frac{-23x-30}{x^{2}-36}
Whakarohaina te \left(x-6\right)\left(x+6\right).
\frac{\left(x-3\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}-\frac{\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+6 me x-6 ko \left(x-6\right)\left(x+6\right). Whakareatia \frac{x-3}{x+6} ki te \frac{x-6}{x-6}. Whakareatia \frac{x+8}{x-6} ki te \frac{x+6}{x+6}.
\frac{\left(x-3\right)\left(x-6\right)-\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}
Tā te mea he rite te tauraro o \frac{\left(x-3\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)} me \frac{\left(x+8\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-6x-3x+18-x^{2}-6x-8x-48}{\left(x-6\right)\left(x+6\right)}
Mahia ngā whakarea i roto o \left(x-3\right)\left(x-6\right)-\left(x+8\right)\left(x+6\right).
\frac{-23x-30}{\left(x-6\right)\left(x+6\right)}
Whakakotahitia ngā kupu rite i x^{2}-6x-3x+18-x^{2}-6x-8x-48.
\frac{-23x-30}{x^{2}-36}
Whakarohaina te \left(x-6\right)\left(x+6\right).