Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+6,x-3,x^{2}+3x-18.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
Whakareatia te x-3 ki te x-3, ka \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-6x+9+4x-12=x^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-2x+9-12=x^{2}
Pahekotia te -6x me 4x, ka -2x.
2x^{2}-2x-3=x^{2}
Tangohia te 12 i te 9, ka -3.
2x^{2}-2x-3-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-2x-3=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
a+b=-2 ab=-3
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x-3 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-3\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+1=0.
x=-1
Tē taea kia ōrite te tāupe x ki 3.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+6,x-3,x^{2}+3x-18.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
Whakareatia te x-3 ki te x-3, ka \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-6x+9+4x-12=x^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-2x+9-12=x^{2}
Pahekotia te -6x me 4x, ka -2x.
2x^{2}-2x-3=x^{2}
Tangohia te 12 i te 9, ka -3.
2x^{2}-2x-3-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-2x-3=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
a+b=-2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(x-3\right)
Tuhia anō te x^{2}-2x-3 hei \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Whakatauwehea atu x i te x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+1=0.
x=-1
Tē taea kia ōrite te tāupe x ki 3.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+6,x-3,x^{2}+3x-18.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
Whakareatia te x-3 ki te x-3, ka \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-6x+9+4x-12=x^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-2x+9-12=x^{2}
Pahekotia te -6x me 4x, ka -2x.
2x^{2}-2x-3=x^{2}
Tangohia te 12 i te 9, ka -3.
2x^{2}-2x-3-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-2x-3=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Tāpiri 4 ki te 12.
x=\frac{-\left(-2\right)±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{2±4}{2}
Ko te tauaro o -2 ko 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{2±4}{2} ina he tāpiri te ±. Tāpiri 2 ki te 4.
x=3
Whakawehe 6 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{2±4}{2} ina he tango te ±. Tango 4 mai i 2.
x=-1
Whakawehe -2 ki te 2.
x=3 x=-1
Kua oti te whārite te whakatau.
x=-1
Tē taea kia ōrite te tāupe x ki 3.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+6,x-3,x^{2}+3x-18.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
Whakareatia te x-3 ki te x-3, ka \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-6x+9+4x-12=x^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-2x+9-12=x^{2}
Pahekotia te -6x me 4x, ka -2x.
2x^{2}-2x-3=x^{2}
Tangohia te 12 i te 9, ka -3.
2x^{2}-2x-3-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-2x-3=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-2x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-1
Tē taea kia ōrite te tāupe x ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}