Whakaoti mō x
x=11
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\left(x-3\right)+\left(x+2\right)\left(x-2\right)=2x^{2}-5x-6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-3,x^{2}-x-6.
\left(x-3\right)^{2}+\left(x+2\right)\left(x-2\right)=2x^{2}-5x-6
Whakareatia te x-3 ki te x-3, ka \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+2\right)\left(x-2\right)=2x^{2}-5x-6
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-4=2x^{2}-5x-6
Whakaarohia te \left(x+2\right)\left(x-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
2x^{2}-6x+9-4=2x^{2}-5x-6
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-6x+5=2x^{2}-5x-6
Tangohia te 4 i te 9, ka 5.
2x^{2}-6x+5-2x^{2}=-5x-6
Tangohia te 2x^{2} mai i ngā taha e rua.
-6x+5=-5x-6
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
-6x+5+5x=-6
Me tāpiri te 5x ki ngā taha e rua.
-x+5=-6
Pahekotia te -6x me 5x, ka -x.
-x=-6-5
Tangohia te 5 mai i ngā taha e rua.
-x=-11
Tangohia te 5 i te -6, ka -11.
x=11
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}