Whakaoti mō x
x = \frac{101}{32} = 3\frac{5}{32} = 3.15625
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x-3\right)+105=5\left(7x-1\right)
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3x-9+105=5\left(7x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-3.
3x+96=5\left(7x-1\right)
Tāpirihia te -9 ki te 105, ka 96.
3x+96=35x-5
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 7x-1.
3x+96-35x=-5
Tangohia te 35x mai i ngā taha e rua.
-32x+96=-5
Pahekotia te 3x me -35x, ka -32x.
-32x=-5-96
Tangohia te 96 mai i ngā taha e rua.
-32x=-101
Tangohia te 96 i te -5, ka -101.
x=\frac{-101}{-32}
Whakawehea ngā taha e rua ki te -32.
x=\frac{101}{32}
Ka taea te hautanga \frac{-101}{-32} te whakamāmā ki te \frac{101}{32} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}