Whakaoti mō x
x = \frac{27}{19} = 1\frac{8}{19} \approx 1.421052632
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x-4\right)\left(x-2\right)+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,\frac{4}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(3x-4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,3x-4.
3x^{2}-10x+8+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-4 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-10x+8+5x-5=\left(3x-4\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 5.
3x^{2}-5x+8-5=\left(3x-4\right)\left(x+6\right)
Pahekotia te -10x me 5x, ka -5x.
3x^{2}-5x+3=\left(3x-4\right)\left(x+6\right)
Tangohia te 5 i te 8, ka 3.
3x^{2}-5x+3=3x^{2}+14x-24
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-4 ki te x+6 ka whakakotahi i ngā kupu rite.
3x^{2}-5x+3-3x^{2}=14x-24
Tangohia te 3x^{2} mai i ngā taha e rua.
-5x+3=14x-24
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-5x+3-14x=-24
Tangohia te 14x mai i ngā taha e rua.
-19x+3=-24
Pahekotia te -5x me -14x, ka -19x.
-19x=-24-3
Tangohia te 3 mai i ngā taha e rua.
-19x=-27
Tangohia te 3 i te -24, ka -27.
x=\frac{-27}{-19}
Whakawehea ngā taha e rua ki te -19.
x=\frac{27}{19}
Ka taea te hautanga \frac{-27}{-19} te whakamāmā ki te \frac{27}{19} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}