Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x-4\right)\left(x-2\right)+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,\frac{4}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(3x-4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,3x-4.
3x^{2}-10x+8+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-4 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-10x+8+5x-5=\left(3x-4\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 5.
3x^{2}-5x+8-5=\left(3x-4\right)\left(x+6\right)
Pahekotia te -10x me 5x, ka -5x.
3x^{2}-5x+3=\left(3x-4\right)\left(x+6\right)
Tangohia te 5 i te 8, ka 3.
3x^{2}-5x+3=3x^{2}+14x-24
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-4 ki te x+6 ka whakakotahi i ngā kupu rite.
3x^{2}-5x+3-3x^{2}=14x-24
Tangohia te 3x^{2} mai i ngā taha e rua.
-5x+3=14x-24
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-5x+3-14x=-24
Tangohia te 14x mai i ngā taha e rua.
-19x+3=-24
Pahekotia te -5x me -14x, ka -19x.
-19x=-24-3
Tangohia te 3 mai i ngā taha e rua.
-19x=-27
Tangohia te 3 i te -24, ka -27.
x=\frac{-27}{-19}
Whakawehea ngā taha e rua ki te -19.
x=\frac{27}{19}
Ka taea te hautanga \frac{-27}{-19} te whakamāmā ki te \frac{27}{19} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.