Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x-1}{\left(x+1\right)\left(x+2\right)}+\frac{6}{\left(x-2\right)\left(-x-1\right)}-\frac{10-x}{4-x^{2}}
Tauwehea te x^{2}+3x+2. Tauwehea te 2+x-x^{2}.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}+\frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+1\right)\left(x+2\right) me \left(x-2\right)\left(-x-1\right) ko \left(x-2\right)\left(x+1\right)\left(x+2\right). Whakareatia \frac{x-1}{\left(x+1\right)\left(x+2\right)} ki te \frac{x-2}{x-2}. Whakareatia \frac{6}{\left(x-2\right)\left(-x-1\right)} ki te \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Tā te mea he rite te tauraro o \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} me \frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}-2x-x+2-6x-12}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Mahia ngā whakarea i roto o \left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right).
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Whakakotahitia ngā kupu rite i x^{2}-2x-x+2-6x-12.
\frac{\left(x-10\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{\left(x-2\right)\left(-x-2\right)}
Tauwehea te 4-x^{2}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-2\right)\left(x+2\right) me \left(x-2\right)\left(-x-2\right) ko \left(x-2\right)\left(x+2\right). Whakareatia \frac{10-x}{\left(x-2\right)\left(-x-2\right)} ki te \frac{-1}{-1}.
\frac{x-10-\left(-\left(10-x\right)\right)}{\left(x-2\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{x-10}{\left(x-2\right)\left(x+2\right)} me \frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x-10+10-x}{\left(x-2\right)\left(x+2\right)}
Mahia ngā whakarea i roto o x-10-\left(-\left(10-x\right)\right).
\frac{0}{\left(x-2\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i x-10+10-x.
0
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.