Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,\frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}-5x+2=10x+20
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 10.
3x^{2}-5x+2-10x=20
Tangohia te 10x mai i ngā taha e rua.
3x^{2}-15x+2=20
Pahekotia te -5x me -10x, ka -15x.
3x^{2}-15x+2-20=0
Tangohia te 20 mai i ngā taha e rua.
3x^{2}-15x-18=0
Tangohia te 20 i te 2, ka -18.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -15 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
Whakareatia -12 ki te -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
Tāpiri 225 ki te 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
Tuhia te pūtakerua o te 441.
x=\frac{15±21}{2\times 3}
Ko te tauaro o -15 ko 15.
x=\frac{15±21}{6}
Whakareatia 2 ki te 3.
x=\frac{36}{6}
Nā, me whakaoti te whārite x=\frac{15±21}{6} ina he tāpiri te ±. Tāpiri 15 ki te 21.
x=6
Whakawehe 36 ki te 6.
x=-\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{15±21}{6} ina he tango te ±. Tango 21 mai i 15.
x=-1
Whakawehe -6 ki te 6.
x=6 x=-1
Kua oti te whārite te whakatau.
\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,\frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}-5x+2=10x+20
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 10.
3x^{2}-5x+2-10x=20
Tangohia te 10x mai i ngā taha e rua.
3x^{2}-15x+2=20
Pahekotia te -5x me -10x, ka -15x.
3x^{2}-15x=20-2
Tangohia te 2 mai i ngā taha e rua.
3x^{2}-15x=18
Tangohia te 2 i te 20, ka 18.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-5x=\frac{18}{3}
Whakawehe -15 ki te 3.
x^{2}-5x=6
Whakawehe 18 ki te 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Tāpiri 6 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Whakarūnātia.
x=6 x=-1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.