Whakaoti mō x
x=3
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x - 1 } { 4 } + 2 = 1 + \frac { 2 x + 3 } { 6 }
Tohaina
Kua tāruatia ki te papatopenga
3\left(x-1\right)+24=12+2\left(2x+3\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
3x-3+24=12+2\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x+21=12+2\left(2x+3\right)
Tāpirihia te -3 ki te 24, ka 21.
3x+21=12+4x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+3.
3x+21=18+4x
Tāpirihia te 12 ki te 6, ka 18.
3x+21-4x=18
Tangohia te 4x mai i ngā taha e rua.
-x+21=18
Pahekotia te 3x me -4x, ka -x.
-x=18-21
Tangohia te 21 mai i ngā taha e rua.
-x=-3
Tangohia te 21 i te 18, ka -3.
x=3
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}