Whakaoti mō x
x=\frac{1}{6}\approx 0.166666667
x=0
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { x - 1 } { 2 x + 3 } - \frac { 2 x - 1 } { 3 - 2 x } = 0
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-3\right)\left(x-1\right)-\left(-3-2x\right)\left(2x-1\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-3\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+3,3-2x.
2x^{2}-5x+3-\left(-3-2x\right)\left(2x-1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3-\left(-4x+3-4x^{2}\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -3-2x ki te 2x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3+4x-3+4x^{2}=0
Hei kimi i te tauaro o -4x+3-4x^{2}, kimihia te tauaro o ia taurangi.
2x^{2}-x+3-3+4x^{2}=0
Pahekotia te -5x me 4x, ka -x.
2x^{2}-x+4x^{2}=0
Tangohia te 3 i te 3, ka 0.
6x^{2}-x=0
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
x\left(6x-1\right)=0
Tauwehea te x.
x=0 x=\frac{1}{6}
Hei kimi otinga whārite, me whakaoti te x=0 me te 6x-1=0.
\left(2x-3\right)\left(x-1\right)-\left(-3-2x\right)\left(2x-1\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-3\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+3,3-2x.
2x^{2}-5x+3-\left(-3-2x\right)\left(2x-1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3-\left(-4x+3-4x^{2}\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -3-2x ki te 2x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3+4x-3+4x^{2}=0
Hei kimi i te tauaro o -4x+3-4x^{2}, kimihia te tauaro o ia taurangi.
2x^{2}-x+3-3+4x^{2}=0
Pahekotia te -5x me 4x, ka -x.
2x^{2}-x+4x^{2}=0
Tangohia te 3 i te 3, ka 0.
6x^{2}-x=0
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times 6}
Tuhia te pūtakerua o te 1.
x=\frac{1±1}{2\times 6}
Ko te tauaro o -1 ko 1.
x=\frac{1±1}{12}
Whakareatia 2 ki te 6.
x=\frac{2}{12}
Nā, me whakaoti te whārite x=\frac{1±1}{12} ina he tāpiri te ±. Tāpiri 1 ki te 1.
x=\frac{1}{6}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{12}
Nā, me whakaoti te whārite x=\frac{1±1}{12} ina he tango te ±. Tango 1 mai i 1.
x=0
Whakawehe 0 ki te 12.
x=\frac{1}{6} x=0
Kua oti te whārite te whakatau.
\left(2x-3\right)\left(x-1\right)-\left(-3-2x\right)\left(2x-1\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-3\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+3,3-2x.
2x^{2}-5x+3-\left(-3-2x\right)\left(2x-1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3-\left(-4x+3-4x^{2}\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -3-2x ki te 2x-1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3+4x-3+4x^{2}=0
Hei kimi i te tauaro o -4x+3-4x^{2}, kimihia te tauaro o ia taurangi.
2x^{2}-x+3-3+4x^{2}=0
Pahekotia te -5x me 4x, ka -x.
2x^{2}-x+4x^{2}=0
Tangohia te 3 i te 3, ka 0.
6x^{2}-x=0
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
\frac{6x^{2}-x}{6}=\frac{0}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{1}{6}x=\frac{0}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{6}x=0
Whakawehe 0 ki te 6.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\left(-\frac{1}{12}\right)^{2}
Whakawehea te -\frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{12}. Nā, tāpiria te pūrua o te -\frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{1}{144}
Pūruatia -\frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{12}\right)^{2}=\frac{1}{144}
Tauwehea x^{2}-\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{12}=\frac{1}{12} x-\frac{1}{12}=-\frac{1}{12}
Whakarūnātia.
x=\frac{1}{6} x=0
Me tāpiri \frac{1}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}