Whakaoti mō x
x>-21
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(x-1\right)-20<2\left(3x-2\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 2,5. I te mea he tōrunga te 10, kāore e huri te ahunga koreōrite.
5x-5-20<2\left(3x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
5x-25<2\left(3x-2\right)
Tangohia te 20 i te -5, ka -25.
5x-25<6x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-2.
5x-25-6x<-4
Tangohia te 6x mai i ngā taha e rua.
-x-25<-4
Pahekotia te 5x me -6x, ka -x.
-x<-4+25
Me tāpiri te 25 ki ngā taha e rua.
-x<21
Tāpirihia te -4 ki te 25, ka 21.
x>-21
Whakawehea ngā taha e rua ki te -1. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}