Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x\left(x-2\right)}{x-2}-\frac{3}{x-2}}{x-\frac{12}{x+1}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x-2}{x-2}.
\frac{\frac{x\left(x-2\right)-3}{x-2}}{x-\frac{12}{x+1}}
Tā te mea he rite te tauraro o \frac{x\left(x-2\right)}{x-2} me \frac{3}{x-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-2x-3}{x-2}}{x-\frac{12}{x+1}}
Mahia ngā whakarea i roto o x\left(x-2\right)-3.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x\left(x+1\right)}{x+1}-\frac{12}{x+1}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x+1}{x+1}.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x\left(x+1\right)-12}{x+1}}
Tā te mea he rite te tauraro o \frac{x\left(x+1\right)}{x+1} me \frac{12}{x+1}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x^{2}+x-12}{x+1}}
Mahia ngā whakarea i roto o x\left(x+1\right)-12.
\frac{\left(x^{2}-2x-3\right)\left(x+1\right)}{\left(x-2\right)\left(x^{2}+x-12\right)}
Whakawehe \frac{x^{2}-2x-3}{x-2} ki te \frac{x^{2}+x-12}{x+1} mā te whakarea \frac{x^{2}-2x-3}{x-2} ki te tau huripoki o \frac{x^{2}+x-12}{x+1}.
\frac{\left(x-3\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+4\right)}
Me whakakore tahi te x-3 i te taurunga me te tauraro.
\frac{x^{2}+2x+1}{x^{2}+2x-8}
Me whakaroha te kīanga.
\frac{\frac{x\left(x-2\right)}{x-2}-\frac{3}{x-2}}{x-\frac{12}{x+1}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x-2}{x-2}.
\frac{\frac{x\left(x-2\right)-3}{x-2}}{x-\frac{12}{x+1}}
Tā te mea he rite te tauraro o \frac{x\left(x-2\right)}{x-2} me \frac{3}{x-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-2x-3}{x-2}}{x-\frac{12}{x+1}}
Mahia ngā whakarea i roto o x\left(x-2\right)-3.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x\left(x+1\right)}{x+1}-\frac{12}{x+1}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x+1}{x+1}.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x\left(x+1\right)-12}{x+1}}
Tā te mea he rite te tauraro o \frac{x\left(x+1\right)}{x+1} me \frac{12}{x+1}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-2x-3}{x-2}}{\frac{x^{2}+x-12}{x+1}}
Mahia ngā whakarea i roto o x\left(x+1\right)-12.
\frac{\left(x^{2}-2x-3\right)\left(x+1\right)}{\left(x-2\right)\left(x^{2}+x-12\right)}
Whakawehe \frac{x^{2}-2x-3}{x-2} ki te \frac{x^{2}+x-12}{x+1} mā te whakarea \frac{x^{2}-2x-3}{x-2} ki te tau huripoki o \frac{x^{2}+x-12}{x+1}.
\frac{\left(x-3\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+4\right)}
Me whakakore tahi te x-3 i te taurunga me te tauraro.
\frac{x^{2}+2x+1}{x^{2}+2x-8}
Me whakaroha te kīanga.