Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x+1.
x^{2}-4x-3x+3x+4=0
Pahekotia te 4x^{2} me -3x^{2}, ka x^{2}.
x^{2}-7x+3x+4=0
Pahekotia te -4x me -3x, ka -7x.
x^{2}-4x+4=0
Pahekotia te -7x me 3x, ka -4x.
a+b=-4 ab=4
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x+4 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x-2\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=2
Hei kimi i te otinga whārite, whakaotia te x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x+1.
x^{2}-4x-3x+3x+4=0
Pahekotia te 4x^{2} me -3x^{2}, ka x^{2}.
x^{2}-7x+3x+4=0
Pahekotia te -4x me -3x, ka -7x.
x^{2}-4x+4=0
Pahekotia te -7x me 3x, ka -4x.
a+b=-4 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Tuhia anō te x^{2}-4x+4 hei \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-2\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=2
Hei kimi i te otinga whārite, whakaotia te x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x+1.
x^{2}-4x-3x+3x+4=0
Pahekotia te 4x^{2} me -3x^{2}, ka x^{2}.
x^{2}-7x+3x+4=0
Pahekotia te -4x me -3x, ka -7x.
x^{2}-4x+4=0
Pahekotia te -7x me 3x, ka -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Tāpiri 16 ki te -16.
x=-\frac{-4}{2}
Tuhia te pūtakerua o te 0.
x=\frac{4}{2}
Ko te tauaro o -4 ko 4.
x=2
Whakawehe 4 ki te 2.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x+1.
x^{2}-4x-3x+3x+4=0
Pahekotia te 4x^{2} me -3x^{2}, ka x^{2}.
x^{2}-7x+3x+4=0
Pahekotia te -4x me -3x, ka -7x.
x^{2}-4x+4=0
Pahekotia te -7x me 3x, ka -4x.
\left(x-2\right)^{2}=0
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=0 x-2=0
Whakarūnātia.
x=2 x=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=2
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}