Whakaoti mō x
x = \frac{\sqrt{321} - 7}{2} \approx 5.458236434
x=\frac{-\sqrt{321}-7}{2}\approx -12.458236434
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(x+7\right)=34\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}+7x=34\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+7.
x^{2}+7x=68
Whakareatia te 34 ki te 2, ka 68.
x^{2}+7x-68=0
Tangohia te 68 mai i ngā taha e rua.
x=\frac{-7±\sqrt{7^{2}-4\left(-68\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me -68 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-68\right)}}{2}
Pūrua 7.
x=\frac{-7±\sqrt{49+272}}{2}
Whakareatia -4 ki te -68.
x=\frac{-7±\sqrt{321}}{2}
Tāpiri 49 ki te 272.
x=\frac{\sqrt{321}-7}{2}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{321}}{2} ina he tāpiri te ±. Tāpiri -7 ki te \sqrt{321}.
x=\frac{-\sqrt{321}-7}{2}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{321}}{2} ina he tango te ±. Tango \sqrt{321} mai i -7.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
Kua oti te whārite te whakatau.
x\left(x+7\right)=34\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}+7x=34\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+7.
x^{2}+7x=68
Whakareatia te 34 ki te 2, ka 68.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=68+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=68+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=\frac{321}{4}
Tāpiri 68 ki te \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{321}{4}
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{321}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=\frac{\sqrt{321}}{2} x+\frac{7}{2}=-\frac{\sqrt{321}}{2}
Whakarūnātia.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}