Whakaoti mō x
x=\frac{1}{8}=0.125
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { x } { x - 1 } = 8 x + \frac { 1 } { x - 1 }
Tohaina
Kua tāruatia ki te papatopenga
x=8x\left(x-1\right)+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
x=8x^{2}-8x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x-1.
x-8x^{2}=-8x+1
Tangohia te 8x^{2} mai i ngā taha e rua.
x-8x^{2}+8x=1
Me tāpiri te 8x ki ngā taha e rua.
9x-8x^{2}=1
Pahekotia te x me 8x, ka 9x.
9x-8x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
-8x^{2}+9x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 9 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+32\left(-1\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-9±\sqrt{81-32}}{2\left(-8\right)}
Whakareatia 32 ki te -1.
x=\frac{-9±\sqrt{49}}{2\left(-8\right)}
Tāpiri 81 ki te -32.
x=\frac{-9±7}{2\left(-8\right)}
Tuhia te pūtakerua o te 49.
x=\frac{-9±7}{-16}
Whakareatia 2 ki te -8.
x=-\frac{2}{-16}
Nā, me whakaoti te whārite x=\frac{-9±7}{-16} ina he tāpiri te ±. Tāpiri -9 ki te 7.
x=\frac{1}{8}
Whakahekea te hautanga \frac{-2}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{-16}
Nā, me whakaoti te whārite x=\frac{-9±7}{-16} ina he tango te ±. Tango 7 mai i -9.
x=1
Whakawehe -16 ki te -16.
x=\frac{1}{8} x=1
Kua oti te whārite te whakatau.
x=\frac{1}{8}
Tē taea kia ōrite te tāupe x ki 1.
x=8x\left(x-1\right)+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
x=8x^{2}-8x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x-1.
x-8x^{2}=-8x+1
Tangohia te 8x^{2} mai i ngā taha e rua.
x-8x^{2}+8x=1
Me tāpiri te 8x ki ngā taha e rua.
9x-8x^{2}=1
Pahekotia te x me 8x, ka 9x.
-8x^{2}+9x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+9x}{-8}=\frac{1}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{9}{-8}x=\frac{1}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-\frac{9}{8}x=\frac{1}{-8}
Whakawehe 9 ki te -8.
x^{2}-\frac{9}{8}x=-\frac{1}{8}
Whakawehe 1 ki te -8.
x^{2}-\frac{9}{8}x+\left(-\frac{9}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{9}{16}\right)^{2}
Whakawehea te -\frac{9}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{16}. Nā, tāpiria te pūrua o te -\frac{9}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{8}x+\frac{81}{256}=-\frac{1}{8}+\frac{81}{256}
Pūruatia -\frac{9}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{8}x+\frac{81}{256}=\frac{49}{256}
Tāpiri -\frac{1}{8} ki te \frac{81}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{16}\right)^{2}=\frac{49}{256}
Tauwehea x^{2}-\frac{9}{8}x+\frac{81}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{16}\right)^{2}}=\sqrt{\frac{49}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{16}=\frac{7}{16} x-\frac{9}{16}=-\frac{7}{16}
Whakarūnātia.
x=1 x=\frac{1}{8}
Me tāpiri \frac{9}{16} ki ngā taha e rua o te whārite.
x=\frac{1}{8}
Tē taea kia ōrite te tāupe x ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}