Whakaoti mō x
x=3
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x } { x - 1 } + \frac { 2 x } { x + 1 } = 3
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)x+\left(x-1\right)\times 2x=3\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
x^{2}+x+\left(x-1\right)\times 2x=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te x.
x^{2}+x+\left(2x-2\right)x=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
x^{2}+x+2x^{2}-2x=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te x.
3x^{2}+x-2x=3\left(x-1\right)\left(x+1\right)
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-x=3\left(x-1\right)\left(x+1\right)
Pahekotia te x me -2x, ka -x.
3x^{2}-x=\left(3x-3\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x^{2}-x=3x^{2}-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-3 ki te x+1 ka whakakotahi i ngā kupu rite.
3x^{2}-x-3x^{2}=-3
Tangohia te 3x^{2} mai i ngā taha e rua.
-x=-3
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
x=3
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}