Whakaoti mō x
x=-1
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)x=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
x^{2}-2x-3x=6
Tangohia te 3x mai i ngā taha e rua.
x^{2}-5x=6
Pahekotia te -2x me -3x, ka -5x.
x^{2}-5x-6=0
Tangohia te 6 mai i ngā taha e rua.
a+b=-5 ab=-6
Hei whakaoti i te whārite, whakatauwehea te x^{2}-5x-6 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x-6\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=-1
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+1=0.
\left(x-2\right)x=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
x^{2}-2x-3x=6
Tangohia te 3x mai i ngā taha e rua.
x^{2}-5x=6
Pahekotia te -2x me -3x, ka -5x.
x^{2}-5x-6=0
Tangohia te 6 mai i ngā taha e rua.
a+b=-5 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Tuhia anō te x^{2}-5x-6 hei \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Whakatauwehea atu x i te x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-1
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+1=0.
\left(x-2\right)x=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
x^{2}-2x-3x=6
Tangohia te 3x mai i ngā taha e rua.
x^{2}-5x=6
Pahekotia te -2x me -3x, ka -5x.
x^{2}-5x-6=0
Tangohia te 6 mai i ngā taha e rua.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
Tāpiri 25 ki te 24.
x=\frac{-\left(-5\right)±7}{2}
Tuhia te pūtakerua o te 49.
x=\frac{5±7}{2}
Ko te tauaro o -5 ko 5.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{5±7}{2} ina he tāpiri te ±. Tāpiri 5 ki te 7.
x=6
Whakawehe 12 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{5±7}{2} ina he tango te ±. Tango 7 mai i 5.
x=-1
Whakawehe -2 ki te 2.
x=6 x=-1
Kua oti te whārite te whakatau.
\left(x-2\right)x=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
x^{2}-2x-3x=6
Tangohia te 3x mai i ngā taha e rua.
x^{2}-5x=6
Pahekotia te -2x me -3x, ka -5x.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Tāpiri 6 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Whakarūnātia.
x=6 x=-1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}