Whakaoti mō x (complex solution)
x=\frac{35q}{q^{2}+q+1}
q\neq \frac{-1+\sqrt{3}i}{2}\text{ and }q\neq \frac{-\sqrt{3}i-1}{2}\text{ and }q\neq 0
Whakaoti mō x
x=\frac{35q}{q^{2}+q+1}
q\neq 0
Whakaoti mō q (complex solution)
q=\frac{\sqrt{-\left(3x-35\right)\left(x+35\right)}-x+35}{2x}
q=\frac{-\sqrt{-\left(3x-35\right)\left(x+35\right)}-x+35}{2x}\text{, }x\neq 0
Whakaoti mō q
q=\frac{\sqrt{\left(35-3x\right)\left(x+35\right)}-x+35}{2x}
q=\frac{-\sqrt{\left(35-3x\right)\left(x+35\right)}-x+35}{2x}\text{, }x\neq 0\text{ and }x\geq -35\text{ and }x\leq \frac{35}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+qx+xqq=35q
Whakareatia ngā taha e rua o te whārite ki te q.
x+qx+xq^{2}=35q
Whakareatia te q ki te q, ka q^{2}.
\left(1+q+q^{2}\right)x=35q
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(q^{2}+q+1\right)x=35q
He hanga arowhānui tō te whārite.
\frac{\left(q^{2}+q+1\right)x}{q^{2}+q+1}=\frac{35q}{q^{2}+q+1}
Whakawehea ngā taha e rua ki te q^{2}+q+1.
x=\frac{35q}{q^{2}+q+1}
Mā te whakawehe ki te q^{2}+q+1 ka wetekia te whakareanga ki te q^{2}+q+1.
x+qx+xqq=35q
Whakareatia ngā taha e rua o te whārite ki te q.
x+qx+xq^{2}=35q
Whakareatia te q ki te q, ka q^{2}.
\left(1+q+q^{2}\right)x=35q
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(q^{2}+q+1\right)x=35q
He hanga arowhānui tō te whārite.
\frac{\left(q^{2}+q+1\right)x}{q^{2}+q+1}=\frac{35q}{q^{2}+q+1}
Whakawehea ngā taha e rua ki te q^{2}+q+1.
x=\frac{35q}{q^{2}+q+1}
Mā te whakawehe ki te q^{2}+q+1 ka wetekia te whakareanga ki te q^{2}+q+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}