Whakaoti mō x
x=-\frac{6\left(3-c\right)}{1+3c-c^{2}}
c\neq \frac{\sqrt{13}+3}{2}\text{ and }c\neq \frac{3-\sqrt{13}}{2}\text{ and }c\neq 3
Whakaoti mō c
c=-\frac{\sqrt{13x^{2}+36x+36}-3x+6}{2x}
c=-\frac{-\sqrt{13x^{2}+36x+36}-3x+6}{2x}\text{, }x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=cx\left(c-3\right)+\left(c-3\right)\times 6
Whakareatia ngā taha e rua o te whārite ki te c-3.
x=xc^{2}-3cx+\left(c-3\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te cx ki te c-3.
x=xc^{2}-3cx+6c-18
Whakamahia te āhuatanga tohatoha hei whakarea te c-3 ki te 6.
x-xc^{2}=-3cx+6c-18
Tangohia te xc^{2} mai i ngā taha e rua.
x-xc^{2}+3cx=6c-18
Me tāpiri te 3cx ki ngā taha e rua.
-xc^{2}+3cx+x=6c-18
Whakaraupapatia anō ngā kīanga tau.
\left(-c^{2}+3c+1\right)x=6c-18
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1+3c-c^{2}\right)x=6c-18
He hanga arowhānui tō te whārite.
\frac{\left(1+3c-c^{2}\right)x}{1+3c-c^{2}}=\frac{6c-18}{1+3c-c^{2}}
Whakawehea ngā taha e rua ki te -c^{2}+3c+1.
x=\frac{6c-18}{1+3c-c^{2}}
Mā te whakawehe ki te -c^{2}+3c+1 ka wetekia te whakareanga ki te -c^{2}+3c+1.
x=\frac{6\left(c-3\right)}{1+3c-c^{2}}
Whakawehe -18+6c ki te -c^{2}+3c+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}