Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō c
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=cx\left(c-3\right)+\left(c-3\right)\times 6
Whakareatia ngā taha e rua o te whārite ki te c-3.
x=xc^{2}-3cx+\left(c-3\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te cx ki te c-3.
x=xc^{2}-3cx+6c-18
Whakamahia te āhuatanga tohatoha hei whakarea te c-3 ki te 6.
x-xc^{2}=-3cx+6c-18
Tangohia te xc^{2} mai i ngā taha e rua.
x-xc^{2}+3cx=6c-18
Me tāpiri te 3cx ki ngā taha e rua.
-xc^{2}+3cx+x=6c-18
Whakaraupapatia anō ngā kīanga tau.
\left(-c^{2}+3c+1\right)x=6c-18
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1+3c-c^{2}\right)x=6c-18
He hanga arowhānui tō te whārite.
\frac{\left(1+3c-c^{2}\right)x}{1+3c-c^{2}}=\frac{6c-18}{1+3c-c^{2}}
Whakawehea ngā taha e rua ki te -c^{2}+3c+1.
x=\frac{6c-18}{1+3c-c^{2}}
Mā te whakawehe ki te -c^{2}+3c+1 ka wetekia te whakareanga ki te -c^{2}+3c+1.
x=\frac{6\left(c-3\right)}{1+3c-c^{2}}
Whakawehe -18+6c ki te -c^{2}+3c+1.