Whakaoti mō b
\left\{\begin{matrix}b=\frac{x}{c+2}\text{, }&x\neq 0\text{ and }c\neq -2\\b\neq 0\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Whakaoti mō c
c=\frac{x}{b}-2
b\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+b\left(-2\right)=cb
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te b.
x+b\left(-2\right)-cb=0
Tangohia te cb mai i ngā taha e rua.
b\left(-2\right)-cb=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-2-c\right)b=-x
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-c-2\right)b=-x
He hanga arowhānui tō te whārite.
\frac{\left(-c-2\right)b}{-c-2}=-\frac{x}{-c-2}
Whakawehea ngā taha e rua ki te -2-c.
b=-\frac{x}{-c-2}
Mā te whakawehe ki te -2-c ka wetekia te whakareanga ki te -2-c.
b=\frac{x}{c+2}
Whakawehe -x ki te -2-c.
b=\frac{x}{c+2}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.
x+b\left(-2\right)=cb
Whakareatia ngā taha e rua o te whārite ki te b.
cb=x+b\left(-2\right)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bc=x-2b
He hanga arowhānui tō te whārite.
\frac{bc}{b}=\frac{x-2b}{b}
Whakawehea ngā taha e rua ki te b.
c=\frac{x-2b}{b}
Mā te whakawehe ki te b ka wetekia te whakareanga ki te b.
c=\frac{x}{b}-2
Whakawehe x-2b ki te b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}