Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=2a\text{, }&a\neq 0\\x\in \mathrm{C}\text{, }&a=\frac{1}{2}\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=2a\text{, }&a\neq 0\\x\in \mathrm{R}\text{, }&a=\frac{1}{2}\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}\\a=\frac{1}{2}=0.5\text{, }&\text{unconditionally}\\a=\frac{x}{2}\text{, }&x\neq 0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Me whakarea ngā taha e rua o te whārite ki te 2a, arā, te tauraro pātahi he tino iti rawa te kitea o a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Whakareatia te a ki te a, ka a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Whakareatia te \frac{1}{2} ki te 2, ka 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Whakareatia te a ki te a, ka a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Whakareatia te 2 ki te 2, ka 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Whakareatia te -\frac{3}{2} ki te 2, ka -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Whakareatia te 2 ki te 2, ka 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4-4a ki te a.
2x+a^{2}=4xa-7a^{2}+4a
Pahekotia te -3a^{2} me -4a^{2}, ka -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Tangohia te 4xa mai i ngā taha e rua.
2x-4xa=-7a^{2}+4a-a^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2x-4xa=-8a^{2}+4a
Pahekotia te -7a^{2} me -a^{2}, ka -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(2-4a\right)x=4a-8a^{2}
He hanga arowhānui tō te whārite.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Whakawehea ngā taha e rua ki te 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Mā te whakawehe ki te 2-4a ka wetekia te whakareanga ki te 2-4a.
x=2a
Whakawehe 4a\left(1-2a\right) ki te 2-4a.
2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Me whakarea ngā taha e rua o te whārite ki te 2a, arā, te tauraro pātahi he tino iti rawa te kitea o a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Whakareatia te a ki te a, ka a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Whakareatia te \frac{1}{2} ki te 2, ka 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Whakareatia te a ki te a, ka a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Whakareatia te 2 ki te 2, ka 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Whakareatia te -\frac{3}{2} ki te 2, ka -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Whakareatia te 2 ki te 2, ka 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4-4a ki te a.
2x+a^{2}=4xa-7a^{2}+4a
Pahekotia te -3a^{2} me -4a^{2}, ka -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Tangohia te 4xa mai i ngā taha e rua.
2x-4xa=-7a^{2}+4a-a^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2x-4xa=-8a^{2}+4a
Pahekotia te -7a^{2} me -a^{2}, ka -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(2-4a\right)x=4a-8a^{2}
He hanga arowhānui tō te whārite.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Whakawehea ngā taha e rua ki te 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Mā te whakawehe ki te 2-4a ka wetekia te whakareanga ki te 2-4a.
x=2a
Whakawehe 4a\left(1-2a\right) ki te 2-4a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}