Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{x}{8}\right)^{2}
Whakareatia te \frac{x}{8} ki te \frac{x}{8}, ka \left(\frac{x}{8}\right)^{2}.
\frac{x^{2}}{8^{2}}
Kia whakarewa i te \frac{x}{8} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{x^{2}}{64}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
\frac{1}{8}x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{8}x^{1})+\frac{1}{8}x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{8}x^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\frac{1}{8}x^{1}\times \frac{1}{8}x^{1-1}+\frac{1}{8}x^{1}\times \frac{1}{8}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{8}x^{1}\times \frac{1}{8}x^{0}+\frac{1}{8}x^{1}\times \frac{1}{8}x^{0}
Whakarūnātia.
\frac{1}{8}\times \frac{1}{8}x^{1}+\frac{1}{8}\times \frac{1}{8}x^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1}{64}x^{1}+\frac{1}{64}x^{1}
Whakarūnātia.
\frac{1+1}{64}x^{1}
Pahekotia ngā kīanga tau ōrite.
\frac{1}{32}x^{1}
Tāpiri \frac{1}{64} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{32}x
Mō tētahi kupu t, t^{1}=t.