Whakaoti mō x
x\geq \frac{120}{31}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { x } { 5 } + \frac { x } { 3 } \geq 4 - \frac { x } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
6x+10x\geq 120-15x
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3,2. I te mea he tōrunga te 30, kāore e huri te ahunga koreōrite.
16x\geq 120-15x
Pahekotia te 6x me 10x, ka 16x.
16x+15x\geq 120
Me tāpiri te 15x ki ngā taha e rua.
31x\geq 120
Pahekotia te 16x me 15x, ka 31x.
x\geq \frac{120}{31}
Whakawehea ngā taha e rua ki te 31. I te mea he tōrunga te 31, kāore e huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}