Whakaoti mō x
x=4\sqrt{2}\approx 5.656854249
x=-4\sqrt{2}\approx -5.656854249
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx=4\times 8
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}=4\times 8
Whakareatia te x ki te x, ka x^{2}.
x^{2}=32
Whakareatia te 4 ki te 8, ka 32.
x=4\sqrt{2} x=-4\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
xx=4\times 8
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}=4\times 8
Whakareatia te x ki te x, ka x^{2}.
x^{2}=32
Whakareatia te 4 ki te 8, ka 32.
x^{2}-32=0
Tangohia te 32 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-32\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-32\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{128}}{2}
Whakareatia -4 ki te -32.
x=\frac{0±8\sqrt{2}}{2}
Tuhia te pūtakerua o te 128.
x=4\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{2}}{2} ina he tāpiri te ±.
x=-4\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{2}}{2} ina he tango te ±.
x=4\sqrt{2} x=-4\sqrt{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}