Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

xx+4\times 8=12x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}+4\times 8=12x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+32=12x
Whakareatia te 4 ki te 8, ka 32.
x^{2}+32-12x=0
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x+32=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-12 ab=32
Hei whakaoti i te whārite, whakatauwehea te x^{2}-12x+32 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-32 -2,-16 -4,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 32.
-1-32=-33 -2-16=-18 -4-8=-12
Tātaihia te tapeke mō ia takirua.
a=-8 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x-8\right)\left(x-4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=8 x=4
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x-4=0.
xx+4\times 8=12x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}+4\times 8=12x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+32=12x
Whakareatia te 4 ki te 8, ka 32.
x^{2}+32-12x=0
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x+32=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-12 ab=1\times 32=32
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-32 -2,-16 -4,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 32.
-1-32=-33 -2-16=-18 -4-8=-12
Tātaihia te tapeke mō ia takirua.
a=-8 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-8x\right)+\left(-4x+32\right)
Tuhia anō te x^{2}-12x+32 hei \left(x^{2}-8x\right)+\left(-4x+32\right).
x\left(x-8\right)-4\left(x-8\right)
Tauwehea te x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-8\right)\left(x-4\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=4
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x-4=0.
xx+4\times 8=12x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}+4\times 8=12x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+32=12x
Whakareatia te 4 ki te 8, ka 32.
x^{2}+32-12x=0
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Whakareatia -4 ki te 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Tāpiri 144 ki te -128.
x=\frac{-\left(-12\right)±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{12±4}{2}
Ko te tauaro o -12 ko 12.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{12±4}{2} ina he tāpiri te ±. Tāpiri 12 ki te 4.
x=8
Whakawehe 16 ki te 2.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{12±4}{2} ina he tango te ±. Tango 4 mai i 12.
x=4
Whakawehe 8 ki te 2.
x=8 x=4
Kua oti te whārite te whakatau.
xx+4\times 8=12x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x.
x^{2}+4\times 8=12x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+32=12x
Whakareatia te 4 ki te 8, ka 32.
x^{2}+32-12x=0
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x=-32
Tangohia te 32 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-12x+\left(-6\right)^{2}=-32+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-32+36
Pūrua -6.
x^{2}-12x+36=4
Tāpiri -32 ki te 36.
\left(x-6\right)^{2}=4
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=2 x-6=-2
Whakarūnātia.
x=8 x=4
Me tāpiri 6 ki ngā taha e rua o te whārite.