Whakaoti mō s
s=-\frac{15\left(x-208\right)}{x^{2}}
x\neq 0
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\\x=208\text{, }&s=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\text{ and }s\geq -\frac{15}{832}\\x=208\text{, }&s=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x\times 3+3x\times 4+2xxs+12\left(\frac{x}{4}-8\right)\times 2=6048
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,6.
4x\times 3+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Whakareatia te x ki te x, ka x^{2}.
12x+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Whakareatia te 4 ki te 3, ka 12.
12x+12x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Whakareatia te 3 ki te 4, ka 12.
24x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Pahekotia te 12x me 12x, ka 24x.
24x+2x^{2}s+24\left(\frac{x}{4}-8\right)=6048
Whakareatia te 12 ki te 2, ka 24.
24x+2x^{2}s+24\times \frac{x}{4}-192=6048
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te \frac{x}{4}-8.
24x+2x^{2}s+6x-192=6048
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 24 me te 4.
30x+2x^{2}s-192=6048
Pahekotia te 24x me 6x, ka 30x.
2x^{2}s-192=6048-30x
Tangohia te 30x mai i ngā taha e rua.
2x^{2}s=6048-30x+192
Me tāpiri te 192 ki ngā taha e rua.
2x^{2}s=6240-30x
Tāpirihia te 6048 ki te 192, ka 6240.
\frac{2x^{2}s}{2x^{2}}=\frac{6240-30x}{2x^{2}}
Whakawehea ngā taha e rua ki te 2x^{2}.
s=\frac{6240-30x}{2x^{2}}
Mā te whakawehe ki te 2x^{2} ka wetekia te whakareanga ki te 2x^{2}.
s=\frac{15\left(208-x\right)}{x^{2}}
Whakawehe 6240-30x ki te 2x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}