Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x\times 4}{20\times 3a^{2}x}
Me whakarea te \frac{x}{20} ki te \frac{4}{3a^{2}x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{3\times 5a^{2}}
Me whakakore tahi te 4x i te taurunga me te tauraro.
\frac{1}{15a^{2}}
Whakareatia te 3 ki te 5, ka 15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{x\times 4}{20\times 3a^{2}x})
Me whakarea te \frac{x}{20} ki te \frac{4}{3a^{2}x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{3\times 5a^{2}})
Me whakakore tahi te 4x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{15a^{2}})
Whakareatia te 3 ki te 5, ka 15.
-\left(15a^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(15a^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(15a^{2}\right)^{-2}\times 2\times 15a^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-30a^{1}\times \left(15a^{2}\right)^{-2}
Whakarūnātia.
-30a\times \left(15a^{2}\right)^{-2}
Mō tētahi kupu t, t^{1}=t.