Aromātai
\frac{1}{3y^{3}}
Kimi Pārōnaki e ai ki y
-\frac{1}{y^{4}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{x\times 2}{2y\times 3xy^{2}}
Me whakarea te \frac{x}{2y} ki te \frac{2}{3xy^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{3yy^{2}}
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{1}{3y^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\times 2}{2y\times 3xy^{2}})
Me whakarea te \frac{x}{2y} ki te \frac{2}{3xy^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{3yy^{2}})
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{3y^{3}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
-\left(3y^{3}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3y^{3}\right)^{-2}\times 3\times 3y^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-9y^{2}\times \left(3y^{3}\right)^{-2}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}