Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x\times 2}{2y\times 3xy^{2}}
Me whakarea te \frac{x}{2y} ki te \frac{2}{3xy^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{3yy^{2}}
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{1}{3y^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\times 2}{2y\times 3xy^{2}})
Me whakarea te \frac{x}{2y} ki te \frac{2}{3xy^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{3yy^{2}})
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{3y^{3}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
-\left(3y^{3}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3y^{3}\right)^{-2}\times 3\times 3y^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-9y^{2}\times \left(3y^{3}\right)^{-2}
Whakarūnātia.