Whakaoti mō x
x=\frac{\sqrt{65}}{20}-\frac{1}{4}\approx 0.153112887
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}\approx -0.653112887
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { x } { 2 x + 1 } + \frac { 2 } { 1 - 2 x } = 3
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,1-2x.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te x.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -1-2x ki te 2.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
Pahekotia te -x me -4x, ka -5x.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
2x^{2}-5x-2=12x^{2}-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-3 ki te 2x+1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-2-12x^{2}=-3
Tangohia te 12x^{2} mai i ngā taha e rua.
-10x^{2}-5x-2=-3
Pahekotia te 2x^{2} me -12x^{2}, ka -10x^{2}.
-10x^{2}-5x-2+3=0
Me tāpiri te 3 ki ngā taha e rua.
-10x^{2}-5x+1=0
Tāpirihia te -2 ki te 3, ka 1.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-10\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, -5 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-10\right)}}{2\left(-10\right)}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25+40}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-\left(-5\right)±\sqrt{65}}{2\left(-10\right)}
Tāpiri 25 ki te 40.
x=\frac{5±\sqrt{65}}{2\left(-10\right)}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{65}}{-20}
Whakareatia 2 ki te -10.
x=\frac{\sqrt{65}+5}{-20}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{65}}{-20} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{65}.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
Whakawehe 5+\sqrt{65} ki te -20.
x=\frac{5-\sqrt{65}}{-20}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{65}}{-20} ina he tango te ±. Tango \sqrt{65} mai i 5.
x=\frac{\sqrt{65}}{20}-\frac{1}{4}
Whakawehe 5-\sqrt{65} ki te -20.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4} x=\frac{\sqrt{65}}{20}-\frac{1}{4}
Kua oti te whārite te whakatau.
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,1-2x.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te x.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -1-2x ki te 2.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
Pahekotia te -x me -4x, ka -5x.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
2x^{2}-5x-2=12x^{2}-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-3 ki te 2x+1 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-2-12x^{2}=-3
Tangohia te 12x^{2} mai i ngā taha e rua.
-10x^{2}-5x-2=-3
Pahekotia te 2x^{2} me -12x^{2}, ka -10x^{2}.
-10x^{2}-5x=-3+2
Me tāpiri te 2 ki ngā taha e rua.
-10x^{2}-5x=-1
Tāpirihia te -3 ki te 2, ka -1.
\frac{-10x^{2}-5x}{-10}=-\frac{1}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\left(-\frac{5}{-10}\right)x=-\frac{1}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}+\frac{1}{2}x=-\frac{1}{-10}
Whakahekea te hautanga \frac{-5}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{1}{2}x=\frac{1}{10}
Whakawehe -1 ki te -10.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{10}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{10}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{80}
Tāpiri \frac{1}{10} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{4}\right)^{2}=\frac{13}{80}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{80}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{\sqrt{65}}{20} x+\frac{1}{4}=-\frac{\sqrt{65}}{20}
Whakarūnātia.
x=\frac{\sqrt{65}}{20}-\frac{1}{4} x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}