Whakaoti mō k (complex solution)
k=\frac{2}{3}-\frac{4}{3x}
x\neq \frac{4}{5}\text{ and }x\neq 0\text{ and }x\neq -4\text{ and }x\neq -1
Whakaoti mō x (complex solution)
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Whakaoti mō k
k=\frac{2}{3}-\frac{4}{3x}
x\neq -4\text{ and }x\neq 0\text{ and }x\neq \frac{4}{5}\text{ and }x\neq -1
Whakaoti mō x
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq 2\text{ and }|k|\neq 1
Tohaina
Kua tāruatia ki te papatopenga
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(k-2\right)\left(k-1\right)\left(k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te k-2 ki te x.
kx-2x+2k-4xk-2+4x=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2k-2 ki te 1-2x.
-3kx-2x+2k-2+4x=2k+2
Pahekotia te kx me -4xk, ka -3kx.
-3kx+2x+2k-2=2k+2
Pahekotia te -2x me 4x, ka 2x.
-3kx+2x+2k-2-2k=2
Tangohia te 2k mai i ngā taha e rua.
-3kx+2x-2=2
Pahekotia te 2k me -2k, ka 0.
-3kx-2=2-2x
Tangohia te 2x mai i ngā taha e rua.
-3kx=2-2x+2
Me tāpiri te 2 ki ngā taha e rua.
-3kx=4-2x
Tāpirihia te 2 ki te 2, ka 4.
\left(-3x\right)k=4-2x
He hanga arowhānui tō te whārite.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Whakawehea ngā taha e rua ki te -3x.
k=\frac{4-2x}{-3x}
Mā te whakawehe ki te -3x ka wetekia te whakareanga ki te -3x.
k=\frac{2}{3}-\frac{4}{3x}
Whakawehe 4-2x ki te -3x.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -1,1,2.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Me whakarea ngā taha e rua o te whārite ki te 2\left(k-2\right)\left(k-1\right)\left(k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te k-2 ki te x.
kx-2x+2k-4kx-2+4x=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2k-2 ki te 1-2x.
-3kx-2x+2k-2+4x=2k+2
Pahekotia te kx me -4kx, ka -3kx.
-3kx+2x+2k-2=2k+2
Pahekotia te -2x me 4x, ka 2x.
-3kx+2x-2=2k+2-2k
Tangohia te 2k mai i ngā taha e rua.
-3kx+2x-2=2
Pahekotia te 2k me -2k, ka 0.
-3kx+2x=2+2
Me tāpiri te 2 ki ngā taha e rua.
-3kx+2x=4
Tāpirihia te 2 ki te 2, ka 4.
\left(-3k+2\right)x=4
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(2-3k\right)x=4
He hanga arowhānui tō te whārite.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Whakawehea ngā taha e rua ki te 2-3k.
x=\frac{4}{2-3k}
Mā te whakawehe ki te 2-3k ka wetekia te whakareanga ki te 2-3k.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(k-2\right)\left(k-1\right)\left(k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te k-2 ki te x.
kx-2x+2k-4xk-2+4x=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2k-2 ki te 1-2x.
-3kx-2x+2k-2+4x=2k+2
Pahekotia te kx me -4xk, ka -3kx.
-3kx+2x+2k-2=2k+2
Pahekotia te -2x me 4x, ka 2x.
-3kx+2x+2k-2-2k=2
Tangohia te 2k mai i ngā taha e rua.
-3kx+2x-2=2
Pahekotia te 2k me -2k, ka 0.
-3kx-2=2-2x
Tangohia te 2x mai i ngā taha e rua.
-3kx=2-2x+2
Me tāpiri te 2 ki ngā taha e rua.
-3kx=4-2x
Tāpirihia te 2 ki te 2, ka 4.
\left(-3x\right)k=4-2x
He hanga arowhānui tō te whārite.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Whakawehea ngā taha e rua ki te -3x.
k=\frac{4-2x}{-3x}
Mā te whakawehe ki te -3x ka wetekia te whakareanga ki te -3x.
k=\frac{2}{3}-\frac{4}{3x}
Whakawehe 4-2x ki te -3x.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -1,1,2.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Me whakarea ngā taha e rua o te whārite ki te 2\left(k-2\right)\left(k-1\right)\left(k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te k-2 ki te x.
kx-2x+2k-4kx-2+4x=2k+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2k-2 ki te 1-2x.
-3kx-2x+2k-2+4x=2k+2
Pahekotia te kx me -4kx, ka -3kx.
-3kx+2x+2k-2=2k+2
Pahekotia te -2x me 4x, ka 2x.
-3kx+2x-2=2k+2-2k
Tangohia te 2k mai i ngā taha e rua.
-3kx+2x-2=2
Pahekotia te 2k me -2k, ka 0.
-3kx+2x=2+2
Me tāpiri te 2 ki ngā taha e rua.
-3kx+2x=4
Tāpirihia te 2 ki te 2, ka 4.
\left(-3k+2\right)x=4
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(2-3k\right)x=4
He hanga arowhānui tō te whārite.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Whakawehea ngā taha e rua ki te 2-3k.
x=\frac{4}{2-3k}
Mā te whakawehe ki te 2-3k ka wetekia te whakareanga ki te 2-3k.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}