Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-3x^{2}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{2}+2)}{\left(-3x^{2}+2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-3x^{2}+2\right)x^{1-1}-x^{1}\times 2\left(-3\right)x^{2-1}}{\left(-3x^{2}+2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-3x^{2}+2\right)x^{0}-x^{1}\left(-6\right)x^{1}}{\left(-3x^{2}+2\right)^{2}}
Mahia ngā tātaitanga.
\frac{-3x^{2}x^{0}+2x^{0}-x^{1}\left(-6\right)x^{1}}{\left(-3x^{2}+2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-3x^{2}+2x^{0}-\left(-6x^{1+1}\right)}{\left(-3x^{2}+2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-3x^{2}+2x^{0}-\left(-6x^{2}\right)}{\left(-3x^{2}+2\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-3-\left(-6\right)\right)x^{2}+2x^{0}}{\left(-3x^{2}+2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{3x^{2}+2x^{0}}{\left(-3x^{2}+2\right)^{2}}
Tango -6 mai i -3.
\frac{3x^{2}+2\times 1}{\left(-3x^{2}+2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3x^{2}+2}{\left(-3x^{2}+2\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.