Whakaoti mō x
x=-\frac{z}{6}-\frac{4y}{9}
Whakaoti mō y
y=-\frac{3z}{8}-\frac{9x}{4}
Tohaina
Kua tāruatia ki te papatopenga
30x+20y+15z=12\left(x+y+z\right)
Me whakarea ngā taha e rua o te whārite ki te 60, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4,5.
30x+20y+15z=12x+12y+12z
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x+y+z.
30x+20y+15z-12x=12y+12z
Tangohia te 12x mai i ngā taha e rua.
18x+20y+15z=12y+12z
Pahekotia te 30x me -12x, ka 18x.
18x+15z=12y+12z-20y
Tangohia te 20y mai i ngā taha e rua.
18x+15z=-8y+12z
Pahekotia te 12y me -20y, ka -8y.
18x=-8y+12z-15z
Tangohia te 15z mai i ngā taha e rua.
18x=-8y-3z
Pahekotia te 12z me -15z, ka -3z.
\frac{18x}{18}=\frac{-8y-3z}{18}
Whakawehea ngā taha e rua ki te 18.
x=\frac{-8y-3z}{18}
Mā te whakawehe ki te 18 ka wetekia te whakareanga ki te 18.
x=-\frac{z}{6}-\frac{4y}{9}
Whakawehe -8y-3z ki te 18.
30x+20y+15z=12\left(x+y+z\right)
Me whakarea ngā taha e rua o te whārite ki te 60, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4,5.
30x+20y+15z=12x+12y+12z
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x+y+z.
30x+20y+15z-12y=12x+12z
Tangohia te 12y mai i ngā taha e rua.
30x+8y+15z=12x+12z
Pahekotia te 20y me -12y, ka 8y.
8y+15z=12x+12z-30x
Tangohia te 30x mai i ngā taha e rua.
8y+15z=-18x+12z
Pahekotia te 12x me -30x, ka -18x.
8y=-18x+12z-15z
Tangohia te 15z mai i ngā taha e rua.
8y=-18x-3z
Pahekotia te 12z me -15z, ka -3z.
\frac{8y}{8}=\frac{-18x-3z}{8}
Whakawehea ngā taha e rua ki te 8.
y=\frac{-18x-3z}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
y=-\frac{3z}{8}-\frac{9x}{4}
Whakawehe -18x-3z ki te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}