Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
x=0
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { x } { 2 + x } = \frac { \frac { x } { 2 } } { 2 - x }
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Tuhia te \left(2+x\right)\times \frac{x}{2} hei hautanga kotahi.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2+x ki te x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Whakawehea ia wā o 2x+x^{2} ki te 2, kia riro ko x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
Hei kimi i te tauaro o x+\frac{1}{2}x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-x=-\frac{1}{2}x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Me tāpiri te \frac{1}{2}x^{2} ki ngā taha e rua.
\frac{3}{2}x^{2}-x=0
Pahekotia te x^{2} me \frac{1}{2}x^{2}, ka \frac{3}{2}x^{2}.
x\left(\frac{3}{2}x-1\right)=0
Tauwehea te x.
x=0 x=\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{3x}{2}-1=0.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Tuhia te \left(2+x\right)\times \frac{x}{2} hei hautanga kotahi.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2+x ki te x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Whakawehea ia wā o 2x+x^{2} ki te 2, kia riro ko x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
Hei kimi i te tauaro o x+\frac{1}{2}x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-x=-\frac{1}{2}x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Me tāpiri te \frac{1}{2}x^{2} ki ngā taha e rua.
\frac{3}{2}x^{2}-x=0
Pahekotia te x^{2} me \frac{1}{2}x^{2}, ka \frac{3}{2}x^{2}.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{3}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3}{2} mō a, -1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times \frac{3}{2}}
Tuhia te pūtakerua o te 1.
x=\frac{1±1}{2\times \frac{3}{2}}
Ko te tauaro o -1 ko 1.
x=\frac{1±1}{3}
Whakareatia 2 ki te \frac{3}{2}.
x=\frac{2}{3}
Nā, me whakaoti te whārite x=\frac{1±1}{3} ina he tāpiri te ±. Tāpiri 1 ki te 1.
x=\frac{0}{3}
Nā, me whakaoti te whārite x=\frac{1±1}{3} ina he tango te ±. Tango 1 mai i 1.
x=0
Whakawehe 0 ki te 3.
x=\frac{2}{3} x=0
Kua oti te whārite te whakatau.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Tuhia te \left(2+x\right)\times \frac{x}{2} hei hautanga kotahi.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2+x ki te x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Whakawehea ia wā o 2x+x^{2} ki te 2, kia riro ko x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
Hei kimi i te tauaro o x+\frac{1}{2}x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-x=-\frac{1}{2}x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Me tāpiri te \frac{1}{2}x^{2} ki ngā taha e rua.
\frac{3}{2}x^{2}-x=0
Pahekotia te x^{2} me \frac{1}{2}x^{2}, ka \frac{3}{2}x^{2}.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{0}{\frac{3}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{0}{\frac{3}{2}}
Mā te whakawehe ki te \frac{3}{2} ka wetekia te whakareanga ki te \frac{3}{2}.
x^{2}-\frac{2}{3}x=\frac{0}{\frac{3}{2}}
Whakawehe -1 ki te \frac{3}{2} mā te whakarea -1 ki te tau huripoki o \frac{3}{2}.
x^{2}-\frac{2}{3}x=0
Whakawehe 0 ki te \frac{3}{2} mā te whakarea 0 ki te tau huripoki o \frac{3}{2}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Whakarūnātia.
x=\frac{2}{3} x=0
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}