Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x^{2}}{x^{2}}.
\frac{x}{\frac{4-x^{2}}{x^{2}}}
Tā te mea he rite te tauraro o \frac{4}{x^{2}} me \frac{x^{2}}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{xx^{2}}{4-x^{2}}
Whakawehe x ki te \frac{4-x^{2}}{x^{2}} mā te whakarea x ki te tau huripoki o \frac{4-x^{2}}{x^{2}}.
\frac{x^{3}}{4-x^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4-x^{2}}{x^{2}}})
Tā te mea he rite te tauraro o \frac{4}{x^{2}} me \frac{x^{2}}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{2}}{4-x^{2}})
Whakawehe x ki te \frac{4-x^{2}}{x^{2}} mā te whakarea x ki te tau huripoki o \frac{4-x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{4-x^{2}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\left(-x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+4)}{\left(-x^{2}+4\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-x^{2}+4\right)\times 3x^{3-1}-x^{3}\times 2\left(-1\right)x^{2-1}}{\left(-x^{2}+4\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-x^{2}+4\right)\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
Mahia ngā tātaitanga.
\frac{-x^{2}\times 3x^{2}+4\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-3x^{2+2}+4\times 3x^{2}-\left(-2x^{3+1}\right)}{\left(-x^{2}+4\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-3x^{4}+12x^{2}-\left(-2x^{4}\right)}{\left(-x^{2}+4\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-3-\left(-2\right)\right)x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
Tango -2 mai i -3.
\frac{x^{2}\left(-x^{2}+12x^{0}\right)}{\left(-x^{2}+4\right)^{2}}
Tauwehea te x^{2}.
\frac{x^{2}\left(-x^{2}+12\times 1\right)}{\left(-x^{2}+4\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}\left(-x^{2}+12\right)}{\left(-x^{2}+4\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.