Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(x^{4}+1\right)=17x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 8x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 2x^{2},8.
4x^{4}+4=17x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{4}+1.
4x^{4}+4-17x^{2}=0
Tangohia te 17x^{2} mai i ngā taha e rua.
4t^{2}-17t+4=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 4\times 4}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te -17 mō te b, me te 4 mō te c i te ture pūrua.
t=\frac{17±15}{8}
Mahia ngā tātaitai.
t=4 t=\frac{1}{4}
Whakaotia te whārite t=\frac{17±15}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=2 x=-2 x=\frac{1}{2} x=-\frac{1}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.