Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Tauwehea te x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{3} ki te \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Tā te mea he rite te tauraro o \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} me \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Mahia ngā whakarea i roto o x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right).
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
Whakakotahitia ngā kupu rite i x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
Whakarohaina te \left(x-1\right)\left(x^{2}+x+1\right).
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Tauwehea te x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{3} ki te \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Tā te mea he rite te tauraro o \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} me \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Mahia ngā whakarea i roto o x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right).
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
Whakakotahitia ngā kupu rite i x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
Whakarohaina te \left(x-1\right)\left(x^{2}+x+1\right).