Whakaoti mō x
x=2
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)^{2}\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)^{2}\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(x-1\right)^{2},\left(x+1\right)^{2}.
\left(x^{2}+2x+1\right)\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+2x+1 ki te x^{3}-1.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{2}-2x+1\right)\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{5}+x^{2}-2x^{4}-2x+x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-2x+1 ki te x^{3}+1.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-x^{5}-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Hei kimi i te tauaro o x^{5}+x^{2}-2x^{4}-2x+x^{3}+1, kimihia te tauaro o ia taurangi.
-x^{2}+2x^{4}-2x+x^{3}-1-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Pahekotia te x^{5} me -x^{5}, ka 0.
-2x^{2}+2x^{4}-2x+x^{3}-1+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
-2x^{2}+4x^{4}-2x+x^{3}-1+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Pahekotia te 2x^{4} me 2x^{4}, ka 4x^{4}.
-2x^{2}+4x^{4}+x^{3}-1-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Pahekotia te -2x me 2x, ka 0.
-2x^{2}+4x^{4}-1-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Pahekotia te x^{3} me -x^{3}, ka 0.
-2x^{2}+4x^{4}-2=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Tangohia te 1 i te -1, ka -2.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
-2x^{2}+4x^{4}-2=\left(6x^{2}-12x+6\right)\left(x^{2}+2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x^{2}-2x+1.
-2x^{2}+4x^{4}-2=6x^{4}-12x^{2}+6
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x^{2}-12x+6 ki te x^{2}+2x+1 ka whakakotahi i ngā kupu rite.
-2x^{2}+4x^{4}-2-6x^{4}=-12x^{2}+6
Tangohia te 6x^{4} mai i ngā taha e rua.
-2x^{2}-2x^{4}-2=-12x^{2}+6
Pahekotia te 4x^{4} me -6x^{4}, ka -2x^{4}.
-2x^{2}-2x^{4}-2+12x^{2}=6
Me tāpiri te 12x^{2} ki ngā taha e rua.
10x^{2}-2x^{4}-2=6
Pahekotia te -2x^{2} me 12x^{2}, ka 10x^{2}.
10x^{2}-2x^{4}-2-6=0
Tangohia te 6 mai i ngā taha e rua.
10x^{2}-2x^{4}-8=0
Tangohia te 6 i te -2, ka -8.
-2t^{2}+10t-8=0
Whakakapia te t mō te x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-8\right)}}{-2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -2 mō te a, te 10 mō te b, me te -8 mō te c i te ture pūrua.
t=\frac{-10±6}{-4}
Mahia ngā tātaitai.
t=1 t=4
Whakaotia te whārite t=\frac{-10±6}{-4} ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-1 x=2 x=-2
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
x=-2 x=2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}