Kimi Pārōnaki e ai ki x
-\left(\frac{x}{x^{2}-1}\right)^{2}\left(x^{2}-3\right)
Aromātai
\frac{x^{3}}{1-x^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+1)}{\left(-x^{2}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-x^{2}+1\right)\times 3x^{3-1}-x^{3}\times 2\left(-1\right)x^{2-1}}{\left(-x^{2}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-x^{2}+1\right)\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{-x^{2}\times 3x^{2}+3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-3x^{2+2}+3x^{2}-\left(-2x^{3+1}\right)}{\left(-x^{2}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-3x^{4}+3x^{2}-\left(-2x^{4}\right)}{\left(-x^{2}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-3-\left(-2\right)\right)x^{4}+3x^{2}}{\left(-x^{2}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{4}+3x^{2}}{\left(-x^{2}+1\right)^{2}}
Tango -2 mai i -3.
\frac{x^{2}\left(-x^{2}+3x^{0}\right)}{\left(-x^{2}+1\right)^{2}}
Tauwehea te x^{2}.
\frac{x^{2}\left(-x^{2}+3\times 1\right)}{\left(-x^{2}+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}\left(-x^{2}+3\right)}{\left(-x^{2}+1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}