Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)}{\left(x^{4}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{4}+1\right)\times 3x^{3-1}-x^{3}\times 4x^{4-1}}{\left(x^{4}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{4}+1\right)\times 3x^{2}-x^{3}\times 4x^{3}}{\left(x^{4}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{4}\times 3x^{2}+3x^{2}-x^{3}\times 4x^{3}}{\left(x^{4}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3x^{4+2}+3x^{2}-4x^{3+3}}{\left(x^{4}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3x^{6}+3x^{2}-4x^{6}}{\left(x^{4}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-4\right)x^{6}+3x^{2}}{\left(x^{4}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{6}+3x^{2}}{\left(x^{4}+1\right)^{2}}
Tango 4 mai i 3.
\frac{x^{2}\left(-x^{4}+3x^{0}\right)}{\left(x^{4}+1\right)^{2}}
Tauwehea te x^{2}.
\frac{x^{2}\left(-x^{4}+3\times 1\right)}{\left(x^{4}+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}\left(-x^{4}+3\right)}{\left(x^{4}+1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.