Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{3}+x\right)\left(x^{2}-2x+1\right)}{\left(x^{2}-x\right)\left(x^{3}-x^{2}\right)}
Whakawehe \frac{x^{3}+x}{x^{2}-x} ki te \frac{x^{3}-x^{2}}{x^{2}-2x+1} mā te whakarea \frac{x^{3}+x}{x^{2}-x} ki te tau huripoki o \frac{x^{3}-x^{2}}{x^{2}-2x+1}.
\frac{x\left(x-1\right)^{2}\left(x^{2}+1\right)}{xx^{2}\left(x-1\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{2}+1}{x^{2}}
Me whakakore tahi te x\left(x-1\right)^{2} i te taurunga me te tauraro.
\frac{\left(x^{3}+x\right)\left(x^{2}-2x+1\right)}{\left(x^{2}-x\right)\left(x^{3}-x^{2}\right)}
Whakawehe \frac{x^{3}+x}{x^{2}-x} ki te \frac{x^{3}-x^{2}}{x^{2}-2x+1} mā te whakarea \frac{x^{3}+x}{x^{2}-x} ki te tau huripoki o \frac{x^{3}-x^{2}}{x^{2}-2x+1}.
\frac{x\left(x-1\right)^{2}\left(x^{2}+1\right)}{xx^{2}\left(x-1\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{2}+1}{x^{2}}
Me whakakore tahi te x\left(x-1\right)^{2} i te taurunga me te tauraro.