Aromātai
\frac{x^{3}-6}{\left(x-2\right)\left(x+3\right)}
Whakaroha
\frac{x^{3}-6}{\left(x-2\right)\left(x+3\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{x^{3}-6}{x^{2}-4}}{\frac{x^{2}+3x}{x^{2}+2x}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\left(x^{3}-6\right)\left(x^{2}+2x\right)}{\left(x^{2}-4\right)\left(x^{2}+3x\right)}
Whakawehe \frac{x^{3}-6}{x^{2}-4} ki te \frac{x^{2}+3x}{x^{2}+2x} mā te whakarea \frac{x^{3}-6}{x^{2}-4} ki te tau huripoki o \frac{x^{2}+3x}{x^{2}+2x}.
\frac{x\left(x+2\right)\left(x^{3}-6\right)}{x\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{3}-6}{\left(x-2\right)\left(x+3\right)}
Me whakakore tahi te x\left(x+2\right) i te taurunga me te tauraro.
\frac{x^{3}-6}{x^{2}+x-6}
Me whakaroha te kīanga.
\frac{\frac{x^{3}-6}{x^{2}-4}}{\frac{x^{2}+3x}{x^{2}+2x}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\left(x^{3}-6\right)\left(x^{2}+2x\right)}{\left(x^{2}-4\right)\left(x^{2}+3x\right)}
Whakawehe \frac{x^{3}-6}{x^{2}-4} ki te \frac{x^{2}+3x}{x^{2}+2x} mā te whakarea \frac{x^{3}-6}{x^{2}-4} ki te tau huripoki o \frac{x^{2}+3x}{x^{2}+2x}.
\frac{x\left(x+2\right)\left(x^{3}-6\right)}{x\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{3}-6}{\left(x-2\right)\left(x+3\right)}
Me whakakore tahi te x\left(x+2\right) i te taurunga me te tauraro.
\frac{x^{3}-6}{x^{2}+x-6}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}