Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-y^{2}}{x^{3}+y^{3}}.
\frac{x-y}{x^{2}-xy+y^{2}}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x-y\right)\left(x+y\right)}{\left(x^{2}-xy+y^{2}\right)\left(x-y\right)}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakarea te \frac{x-y}{x^{2}-xy+y^{2}} ki te \frac{x+y}{x-y} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}-xy+y^{2}}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{\left(x^{2}-xy+y^{2}\right)\left(x^{2}+2xy+y^{2}\right)}
Me whakarea te \frac{x+y}{x^{2}-xy+y^{2}} ki te \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x^{2}-xy+y^{2} i te taurunga me te tauraro.
\frac{x+y}{\left(x+y\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{x+y}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-y^{2}}{x^{3}+y^{3}}.
\frac{x-y}{x^{2}-xy+y^{2}}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x-y\right)\left(x+y\right)}{\left(x^{2}-xy+y^{2}\right)\left(x-y\right)}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakarea te \frac{x-y}{x^{2}-xy+y^{2}} ki te \frac{x+y}{x-y} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}-xy+y^{2}}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{\left(x^{2}-xy+y^{2}\right)\left(x^{2}+2xy+y^{2}\right)}
Me whakarea te \frac{x+y}{x^{2}-xy+y^{2}} ki te \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x^{2}-xy+y^{2} i te taurunga me te tauraro.
\frac{x+y}{\left(x+y\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{x+y}
Me whakakore tahi te x+y i te taurunga me te tauraro.