Aromātai
\frac{1}{x+y}
Whakaroha
\frac{1}{x+y}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-y^{2}}{x^{3}+y^{3}}.
\frac{x-y}{x^{2}-xy+y^{2}}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x-y\right)\left(x+y\right)}{\left(x^{2}-xy+y^{2}\right)\left(x-y\right)}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakarea te \frac{x-y}{x^{2}-xy+y^{2}} ki te \frac{x+y}{x-y} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}-xy+y^{2}}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{\left(x^{2}-xy+y^{2}\right)\left(x^{2}+2xy+y^{2}\right)}
Me whakarea te \frac{x+y}{x^{2}-xy+y^{2}} ki te \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x^{2}-xy+y^{2} i te taurunga me te tauraro.
\frac{x+y}{\left(x+y\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{x+y}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-y^{2}}{x^{3}+y^{3}}.
\frac{x-y}{x^{2}-xy+y^{2}}\times \frac{x+y}{x-y}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{\left(x-y\right)\left(x+y\right)}{\left(x^{2}-xy+y^{2}\right)\left(x-y\right)}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakarea te \frac{x-y}{x^{2}-xy+y^{2}} ki te \frac{x+y}{x-y} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}-xy+y^{2}}\times \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{\left(x^{2}-xy+y^{2}\right)\left(x^{2}+2xy+y^{2}\right)}
Me whakarea te \frac{x+y}{x^{2}-xy+y^{2}} ki te \frac{x^{2}-xy+y^{2}}{x^{2}+2xy+y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x+y}{x^{2}+2xy+y^{2}}
Me whakakore tahi te x^{2}-xy+y^{2} i te taurunga me te tauraro.
\frac{x+y}{\left(x+y\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{x+y}
Me whakakore tahi te x+y i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}