Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Tohaina

\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{\left(x-3\right)\left(x+1\right)}{\left(x-3\right)\left(3x+2\right)}\times \frac{3x^{2}-10x-8}{x^{2}+x-12}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-2x-3}{3x^{2}-7x-6}.
\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{x+1}{3x+2}\times \frac{3x^{2}-10x-8}{x^{2}+x-12}}
Me whakakore tahi te x-3 i te taurunga me te tauraro.
\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)}}
Me whakarea te \frac{x+1}{3x+2} ki te \frac{3x^{2}-10x-8}{x^{2}+x-12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x^{2}-x-2\right)\left(3x+2\right)\left(x^{2}+x-12\right)}{\left(x^{2}-9\right)\left(x+1\right)\left(3x^{2}-10x-8\right)}
Whakawehe \frac{x^{2}-x-2}{x^{2}-9} ki te \frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)} mā te whakarea \frac{x^{2}-x-2}{x^{2}-9} ki te tau huripoki o \frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)}.
\frac{\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+4\right)\left(3x+2\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+3\right)\left(3x+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(x-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+3\right)}
Me whakakore tahi te \left(x-3\right)\left(x+1\right)\left(3x+2\right) i te taurunga me te tauraro.
\frac{x^{2}+2x-8}{x^{2}-x-12}
Me whakaroha te kīanga.
\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{\left(x-3\right)\left(x+1\right)}{\left(x-3\right)\left(3x+2\right)}\times \frac{3x^{2}-10x-8}{x^{2}+x-12}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-2x-3}{3x^{2}-7x-6}.
\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{x+1}{3x+2}\times \frac{3x^{2}-10x-8}{x^{2}+x-12}}
Me whakakore tahi te x-3 i te taurunga me te tauraro.
\frac{\frac{x^{2}-x-2}{x^{2}-9}}{\frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)}}
Me whakarea te \frac{x+1}{3x+2} ki te \frac{3x^{2}-10x-8}{x^{2}+x-12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x^{2}-x-2\right)\left(3x+2\right)\left(x^{2}+x-12\right)}{\left(x^{2}-9\right)\left(x+1\right)\left(3x^{2}-10x-8\right)}
Whakawehe \frac{x^{2}-x-2}{x^{2}-9} ki te \frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)} mā te whakarea \frac{x^{2}-x-2}{x^{2}-9} ki te tau huripoki o \frac{\left(x+1\right)\left(3x^{2}-10x-8\right)}{\left(3x+2\right)\left(x^{2}+x-12\right)}.
\frac{\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+4\right)\left(3x+2\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+3\right)\left(3x+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(x-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+3\right)}
Me whakakore tahi te \left(x-3\right)\left(x+1\right)\left(3x+2\right) i te taurunga me te tauraro.
\frac{x^{2}+2x-8}{x^{2}-x-12}
Me whakaroha te kīanga.