Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Tohaina

\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10}
Whakawehe \frac{x^{2}-8x+15}{5x^{2}+10x} ki te \frac{x^{2}-9}{10x^{2}} mā te whakarea \frac{x^{2}-8x+15}{5x^{2}+10x} ki te tau huripoki o \frac{x^{2}-9}{10x^{2}}.
\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Me whakakore tahi te 5x\left(x-3\right) i te taurunga me te tauraro.
\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}
Me whakarea te \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} ki te \frac{x^{2}+5x+6}{2x-10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x
Me whakakore tahi te 2\left(x-5\right)\left(x+2\right)\left(x+3\right) i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10})
Whakawehe \frac{x^{2}-8x+15}{5x^{2}+10x} ki te \frac{x^{2}-9}{10x^{2}} mā te whakarea \frac{x^{2}-8x+15}{5x^{2}+10x} ki te tau huripoki o \frac{x^{2}-9}{10x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Me whakakore tahi te 5x\left(x-3\right) i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)})
Me whakarea te \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} ki te \frac{x^{2}+5x+6}{2x-10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Me whakakore tahi te 2\left(x-5\right)\left(x+2\right)\left(x+3\right) i te taurunga me te tauraro.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.