Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-4x-1=0
Whakareatia ngā taha e rua o te whārite ki te \left(x^{2}+1\right)^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4}}{2}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{20}}{2}
Tāpiri 16 ki te 4.
x=\frac{-\left(-4\right)±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\frac{4±2\sqrt{5}}{2}
Ko te tauaro o -4 ko 4.
x=\frac{2\sqrt{5}+4}{2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{5}.
x=\sqrt{5}+2
Whakawehe 4+2\sqrt{5} ki te 2.
x=\frac{4-2\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{5}}{2} ina he tango te ±. Tango 2\sqrt{5} mai i 4.
x=2-\sqrt{5}
Whakawehe 4-2\sqrt{5} ki te 2.
x=\sqrt{5}+2 x=2-\sqrt{5}
Kua oti te whārite te whakatau.
x^{2}-4x-1=0
Whakareatia ngā taha e rua o te whārite ki te \left(x^{2}+1\right)^{2}.
x^{2}-4x=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-4x+\left(-2\right)^{2}=1+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=1+4
Pūrua -2.
x^{2}-4x+4=5
Tāpiri 1 ki te 4.
\left(x-2\right)^{2}=5
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{5} x-2=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}+2 x=2-\sqrt{5}
Me tāpiri 2 ki ngā taha e rua o te whārite.