Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7\left(x^{2}-\left(x+5\right)\left(x-5\right)\right)=3\left(x-5\right)
Tē taea kia ōrite te tāupe x ki 5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7\left(x-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,7.
7\left(x^{2}-\left(x^{2}-25\right)\right)=3\left(x-5\right)
Whakaarohia te \left(x+5\right)\left(x-5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
7\left(x^{2}-x^{2}+25\right)=3\left(x-5\right)
Hei kimi i te tauaro o x^{2}-25, kimihia te tauaro o ia taurangi.
7\times 25=3\left(x-5\right)
Pahekotia te x^{2} me -x^{2}, ka 0.
175=3\left(x-5\right)
Whakareatia te 7 ki te 25, ka 175.
175=3x-15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-5.
3x-15=175
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x=175+15
Me tāpiri te 15 ki ngā taha e rua.
3x=190
Tāpirihia te 175 ki te 15, ka 190.
x=\frac{190}{3}
Whakawehea ngā taha e rua ki te 3.