Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{2}}{x-1}-x\leq 1
Tangohia te x mai i ngā taha e rua.
\frac{x^{2}}{x-1}-\frac{x\left(x-1\right)}{x-1}\leq 1
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x-1}{x-1}.
\frac{x^{2}-x\left(x-1\right)}{x-1}\leq 1
Tā te mea he rite te tauraro o \frac{x^{2}}{x-1} me \frac{x\left(x-1\right)}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-x^{2}+x}{x-1}\leq 1
Mahia ngā whakarea i roto o x^{2}-x\left(x-1\right).
\frac{x}{x-1}\leq 1
Whakakotahitia ngā kupu rite i x^{2}-x^{2}+x.
x-1>0 x-1<0
Kāore e taea a te tauraro x-1 te numa kore nā te mea kāore te rituatanga mā te kore e tautuhi. E rua ngā kēhi.
x>1
Whakaarohia te kēhi i ngā wā kei te tōrunga a x-1. Neke atu a -1 ki te taha matau.
x\leq x-1
Kāore te tōrite tuatahi e whakarerekē te aronga ina e whakarea ana mā x-1 mō x-1>0.
x-x\leq -1
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
0\leq -1
Pahekotia ngā kīanga tau ōrite.
x\in \emptyset
Whakaarohia te herenga x>1 e tautuhi ana ki runga.
x<1
Tēnā, me whakaarohia te tauira ina e tōraro a x-1. Neke atu a -1 ki te taha matau.
x\geq x-1
E whakarerekē ana te aronga o te tōrite tuatahi hei ngā wā e whakarea ana a x-1 mō x-1<0.
x-x\geq -1
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
0\geq -1
Pahekotia ngā kīanga tau ōrite.
x<1
Whakaarohia te herenga x<1 e tautuhi ana ki runga.
x<1
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.