Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{9}x^{2}-\frac{4}{3}x=-2
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{9}x^{2}-\frac{4}{3}x-\left(-2\right)=-2-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
\frac{1}{9}x^{2}-\frac{4}{3}x-\left(-2\right)=0
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
\frac{1}{9}x^{2}-\frac{4}{3}x+2=0
Tango -2 mai i 0.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{1}{9}\times 2}}{2\times \frac{1}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{9} mō a, -\frac{4}{3} mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{1}{9}\times 2}}{2\times \frac{1}{9}}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{4}{9}\times 2}}{2\times \frac{1}{9}}
Whakareatia -4 ki te \frac{1}{9}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16-8}{9}}}{2\times \frac{1}{9}}
Whakareatia -\frac{4}{9} ki te 2.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{8}{9}}}{2\times \frac{1}{9}}
Tāpiri \frac{16}{9} ki te -\frac{8}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{2\sqrt{2}}{3}}{2\times \frac{1}{9}}
Tuhia te pūtakerua o te \frac{8}{9}.
x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{2\times \frac{1}{9}}
Ko te tauaro o -\frac{4}{3} ko \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}}
Whakareatia 2 ki te \frac{1}{9}.
x=\frac{2\sqrt{2}+4}{\frac{2}{9}\times 3}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}} ina he tāpiri te ±. Tāpiri \frac{4}{3} ki te \frac{2\sqrt{2}}{3}.
x=3\sqrt{2}+6
Whakawehe \frac{4+2\sqrt{2}}{3} ki te \frac{2}{9} mā te whakarea \frac{4+2\sqrt{2}}{3} ki te tau huripoki o \frac{2}{9}.
x=\frac{4-2\sqrt{2}}{\frac{2}{9}\times 3}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}} ina he tango te ±. Tango \frac{2\sqrt{2}}{3} mai i \frac{4}{3}.
x=6-3\sqrt{2}
Whakawehe \frac{4-2\sqrt{2}}{3} ki te \frac{2}{9} mā te whakarea \frac{4-2\sqrt{2}}{3} ki te tau huripoki o \frac{2}{9}.
x=3\sqrt{2}+6 x=6-3\sqrt{2}
Kua oti te whārite te whakatau.
\frac{1}{9}x^{2}-\frac{4}{3}x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{9}x^{2}-\frac{4}{3}x}{\frac{1}{9}}=-\frac{2}{\frac{1}{9}}
Me whakarea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{\frac{4}{3}}{\frac{1}{9}}\right)x=-\frac{2}{\frac{1}{9}}
Mā te whakawehe ki te \frac{1}{9} ka wetekia te whakareanga ki te \frac{1}{9}.
x^{2}-12x=-\frac{2}{\frac{1}{9}}
Whakawehe -\frac{4}{3} ki te \frac{1}{9} mā te whakarea -\frac{4}{3} ki te tau huripoki o \frac{1}{9}.
x^{2}-12x=-18
Whakawehe -2 ki te \frac{1}{9} mā te whakarea -2 ki te tau huripoki o \frac{1}{9}.
x^{2}-12x+\left(-6\right)^{2}=-18+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-18+36
Pūrua -6.
x^{2}-12x+36=18
Tāpiri -18 ki te 36.
\left(x-6\right)^{2}=18
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{18}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=3\sqrt{2} x-6=-3\sqrt{2}
Whakarūnātia.
x=3\sqrt{2}+6 x=6-3\sqrt{2}
Me tāpiri 6 ki ngā taha e rua o te whārite.