Whakaoti mō x
x=-4
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+8=8x+56
Whakareatia ngā taha e rua o te whārite ki te 8.
x^{2}+8-8x=56
Tangohia te 8x mai i ngā taha e rua.
x^{2}+8-8x-56=0
Tangohia te 56 mai i ngā taha e rua.
x^{2}-48-8x=0
Tangohia te 56 i te 8, ka -48.
x^{2}-8x-48=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=-48
Hei whakaoti i te whārite, whakatauwehea te x^{2}-8x-48 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x-12\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=12 x=-4
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+4=0.
x^{2}+8=8x+56
Whakareatia ngā taha e rua o te whārite ki te 8.
x^{2}+8-8x=56
Tangohia te 8x mai i ngā taha e rua.
x^{2}+8-8x-56=0
Tangohia te 56 mai i ngā taha e rua.
x^{2}-48-8x=0
Tangohia te 56 i te 8, ka -48.
x^{2}-8x-48=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=1\left(-48\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-12x\right)+\left(4x-48\right)
Tuhia anō te x^{2}-8x-48 hei \left(x^{2}-12x\right)+\left(4x-48\right).
x\left(x-12\right)+4\left(x-12\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-12\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-4
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+4=0.
x^{2}+8=8x+56
Whakareatia ngā taha e rua o te whārite ki te 8.
x^{2}+8-8x=56
Tangohia te 8x mai i ngā taha e rua.
x^{2}+8-8x-56=0
Tangohia te 56 mai i ngā taha e rua.
x^{2}-48-8x=0
Tangohia te 56 i te 8, ka -48.
x^{2}-8x-48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-48\right)}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2}
Whakareatia -4 ki te -48.
x=\frac{-\left(-8\right)±\sqrt{256}}{2}
Tāpiri 64 ki te 192.
x=\frac{-\left(-8\right)±16}{2}
Tuhia te pūtakerua o te 256.
x=\frac{8±16}{2}
Ko te tauaro o -8 ko 8.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{8±16}{2} ina he tāpiri te ±. Tāpiri 8 ki te 16.
x=12
Whakawehe 24 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{8±16}{2} ina he tango te ±. Tango 16 mai i 8.
x=-4
Whakawehe -8 ki te 2.
x=12 x=-4
Kua oti te whārite te whakatau.
x^{2}+8=8x+56
Whakareatia ngā taha e rua o te whārite ki te 8.
x^{2}+8-8x=56
Tangohia te 8x mai i ngā taha e rua.
x^{2}-8x=56-8
Tangohia te 8 mai i ngā taha e rua.
x^{2}-8x=48
Tangohia te 8 i te 56, ka 48.
x^{2}-8x+\left(-4\right)^{2}=48+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=48+16
Pūrua -4.
x^{2}-8x+16=64
Tāpiri 48 ki te 16.
\left(x-4\right)^{2}=64
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=8 x-4=-8
Whakarūnātia.
x=12 x=-4
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}